36 research outputs found

    Single-Ended-to-Differential and Differential-to-Differential Channel-Select Filters Based on Piezoelectric AlN Contour-Mode MEMS Resonators

    Get PDF
    This paper reports on the first demonstration of single-ended-to-differential and differential-to-differential (S2D and D2D) channel-select filters based on single-layer (SL) and dual-layer-stacked (DLS) AlN contour-mode MEMS resonators. The key filter performances in terms of insertion loss (as low as 1.4 dB), operating frequency (250-1280 MHz), and out-of-band rejection (up to 60 dB) constitute a significant advancement over all other state-of-the-art RF MEMS technologies. The fabrication process, namely stacking of two piezoelectric AlN layers (600 nm each) and three Pt electrode layers (100 nm each), is fully compatible with the previously demonstrated AlN RF MEMS switch process (also post-CMOS compatible), which makes it possible to implement multi-frequency switchable filter banks on a single chip. The S2D configuration is also able to combine the balun, filter, and impedance transformer functions in a single MEMS structure and only takes on a very small form factor (60×200 μm). These unique features will potentially revolutionize the field of RF and microwave IC design by enabling MEMS-IC co-design and the development of unconventional and low-power RF architectures

    Power Handling and Related Frequency Scaling Advantages in Piezoelectric AlN Contour-Mode MEMS Resonators

    Get PDF
    This paper reports on the analytical modeling and experimental verification of the mechanically-limited power handling and nonlinearity in piezoelectric aluminum nitride (AlN) contour-mode resonators (CMR) having different electrode configurations (thickness field excitation, lateral field excitation, one-port and two-port configurations) and operating at different frequencies (177-3047 MHz). Despite its simplicity, the one-dimensional analytical model fits the experimental behavior of AlN CMRs in terms of power handling capabilities. The model and experiment also confirm the advantage of scaling (i.e. miniaturizing) the AlN CMRs to higher frequencies at which higher critical power density can be more easily attained up to values in excess of 10 μW/μm3

    Novel Electrode Configurations in Dual-Layer Stacked and Switchable AlN Contour-Mode Resonators for Low Impedance Filter Termination and Reduced Insertion Loss

    Get PDF
    This paper reports, for the first time, on the design and demonstration of two novel electrode configurations in dual-layer stacked Aluminum Nitride (AlN) piezoelectric contour-mode resonators to obtain low filter termination resistance (down to 300 Ω, which also results in better filter out-of-band rejection) and reduced insertion loss (IL as low as 1.6 dB) in multi-frequency (100 MHz – 1 GHz) AlN MEMS filters. The microfabrication process is fully compatible with the previously demonstrated AlN RF MEMS switches, which makes it possible to design and integrate multi-frequency switchable filter banks on a single chip

    Microscale inverse acoustic band gap structure in aluminum nitride

    Get PDF
    This work presents the design and demonstration of a microscale inverse acoustic band gap (IABG) structure in aluminum nitride (AlN) with a frequency stop band for bulk acoustic waves in the very high frequency range. Conversely to conventional microscale acoustic band gaps, the IABG is formed by a two-dimensional periodic array of unit cells consisting of a high acoustic velocity material cylinder surrounded by a low acoustic velocity medium. The periodic arrangement of the IABG array induces scattering of incident acoustic waves and generates a stop band, whose center frequency is primarily determined by the lattice constant of the unit cell and whose bandwidth depends on the cylinder radius, the film thickness, and the size of the tethers that support the cylinder. A wide band gap (\u3e13% of the center frequency) is formed by the IABG even when thin AlN films are used. The experimental response of an IABG structure having a unit cell of 8.6 µm and an AlN film thickness of 2 µm confirms the existence of a frequency band gap between 185 MHz and 240 MHz

    Demonstration of Inverse Acoustic Band Gap Structures in AlN and Integration with Piezoelectric Contour Mode Wideband Transducers

    Get PDF
    This paper presents the first design and demonstration of a novel inverse acoustic band gap (IABG) structure in aluminum nitride (AlN) and its direct integration with contour-mode wideband transducers in the Very High Frequency (VHF) range. This design implements an efficient approach to co-fabricate in-plane AlN electro-acoustic transducers with bulk acoustic waves (BAWs) IABG arrays (10x10). The IABG unit cell consists of a cylindrical high acoustic velocity (V) media, which is held by four thin tethers, surrounded by a low acoustic velocity matrix (air). The center media is formed by 2-μm-thick AlN, which is sandwiched by 200-nm-thick top and bottom platinum (Pt) layers. The experimental results indicate that the designed IABG has a stop band from 185 MHz to 240 MHz and is centered at 218 MHz in the Γ-Χ direction. This demonstration not only confirms the existence of the frequency band gap in the IABG structure, but also opens possibilities for the integration of ABG structures with RF MEMS devices

    1.05-GHz CMOS Oscillator Based on Lateral-Field-Excited Piezoelectric AlN Contour-Mode MEMS Resonators

    Get PDF
    This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contour-mode resonators. The oscillator shows a phase noise level of −81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of −146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-μm complementary metal-oxide-semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications

    AlN Contour-Mode Resonators for Narrow-Band Filters above 3 GHz

    Get PDF
    This paper reports on the design and experimental verification of a new class of thin-film (250 nm) super high frequency (SHF) laterally-vibrating piezoelectric microelectromechanical (MEMS) resonators suitable for the fabrication of narrow-band MEMS filters operating at frequencies above 3 GHz. The device dimensions have been opportunely scaled both in the lateral and vertical dimensions in order to excite a contour-extensional mode of vibration in nano features of an ultra-thin (250 nm) aluminum nitride (AlN) film. In this first demonstration two-port resonators vibrating up to 4.5 GHz were fabricated on the same die and attained electromechanical coupling, kt^2, in excess of 1.5 %. These devices were employed to synthesize the highest frequency ever reported MEMS filter (3.7 GHz) based on AlN contour-mode resonator (CMR) technology

    GHz Range Nanoscaled AlN Contour-Mode Resonant Sensors (CMR-S) with Self-Sustained CMOS Oscillator

    Get PDF
    This paper reports on the design and experimental verification of a new class of nanoscaled AlN Contour-Mode Resonant Sensors (CMR-S) for the detection of volatile organic chemicals (VOC) operating at frequencies above 1 GHz and connected to a chip-based CMOS oscillator circuit for direct frequency read-out. This work shows that by scaling the CMR-S to 250 nm in thickness and by operating at high frequencies (1 GHz) a limit of detection of ~35 zg/µm2 and a fast response time (\u3c1 \u3ems) can be attained. In addition, the capability to detect concentrations of volatile organic compounds such as 2,6 dinitroluene (DNT) as low as 1.5 ppb (4.7 ag/µm2) is experimentally verified

    Super-High-Frequency Two-Port AlN Contour-Mode Resonators for RF Applications

    Get PDF
    This paper reports on the design and experimental verification of a new class of thin-film (250 nm) superhigh- frequency laterally-vibrating piezoelectric microelectromechanical (MEMS) resonators suitable for the fabrication of narrow-band MEMS filters operating at frequencies above 3 GHz. The device dimensions have been opportunely scaled both in the lateral and vertical dimensions to excite a contourextensional mode of vibration in nanofeatures of an ultra-thin (250 nm) AlN film. In this first demonstration, 2-port resonators vibrating up to 4.5 GHz have been fabricated on the same die and attained electromechanical coupling, kt^2, in excess of 1.5%. These devices are employed to synthesize the highest frequency MEMS filter (3.7 GHz) based on AlN contour-mode resonator technology ever reported
    corecore